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Abstract

The use of radial basis function networks and least squares algorithms for acquisition, and fine track-

ing of NASA’s 70-meter deep space network antennas is described and evaluated. We demonstrate that

such an RBF network, working in conjunction with an array feed compensation system, and trained

using the computationally efficient orthogonal least-squares algorithm, can point a 70-meter deep space

antenna with RMS errors of 0.1-0.5 millidegree, under a wide range of signal-to-noise-ratios and antenna

elevations, achieving significantly higher accuracies than the 0.8 millidegree benchmark for communi-

cations at Ka-band frequencies of 32 GHz. Continuous adaptation strategies for the RBF network were

also implemented to compensate for antenna aging, thermal gradients, and other factors leading to time-

varying changes in the antenna structure, resulting in dramatic improvements in system performance.

The system described here is currently in testing phases at NASA’s Goldstone DSN station, and slated

for implementation for real-time, adaptive acquisition and tracking of the antenna, marking the first real

example of a computationally intelligent telecommunication application for NASA’s deep space network.

1 Introduction

The NASA Deep Space Network - or DSN - is an international network of steerable, high-gain reflector

antennas, which supports interplanetary spacecraft missions, radio and radar astronomy observations for the
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exploration of the solar system, and select Earth-orbiting missions. The DSN currently consists of three

deep-space communication facilities, placed approximately 120Æ apart around the world, at Goldstone, in

California’s Mojave Desert; near Madrid, Spain; and near Canberra, Australia. This strategic placement

permits constant observation of spacecraft as the Earth rotates, and helps make the DSN the largest and

most sensitive scientific telecommunications system in the world.

Over the past years, there has been increasing interest in the use of shorter carrier wavelengths to enhance

the DSN’s telecommunications and radio science capabilities. Shorter carrier wavelengths, or equivalently

higher carrier frequencies, yield greater antenna gains and increased useful bandwidth, with reduced sensi-

tivity to deep-space plasma effects, which tend to degrade the quality of the received signal.

However, there are also new problems associated with the use of higher carrier frequencies, namely

greater losses due to gravity-induced antenna deformations and wind, greater sensitivity to misalignments

of the radio-frequency (RF) components, and more stringent pointing requirements - all of which are further

complicated by time-varying distortions imposed on the antenna structure. Even in the absence of external

disturbances, time and elevation dependent loss components are introduced due to the Earth’s rotation and

the relative motion of the spacecraft as the antenna tracks the target source (whether it is a spacecraft or a

radio-source). The combination of these factors can lead to unacceptably large pointing errors and signal-

to-noise-ratio (SNR) losses if left uncorrected.

Recovery of SNR losses due to gravitational deformation has been addressed in [1, 2]: here we consider

the problem of acquiring and tracking spacecraft with sufficient accuracy to maintain acceptably small losses

due to pointing (nominally 0.1 dB) on large DSN antennas.

1.1 The Array Feed Compensation System

A recently developed approach for recovering losses due to gravitational deformations, thermal distortion

and wind consists of a real-time compensation system employing a seven-element array of feeds in the focal

plane of the antenna’s subreflector [1]. TheArray Feed Compensation System(AFCS) has been evaluated

at the DSN’s Goldstone complex, and has successfully demonstrated real-time gravity-compensation and

closed-loop tracking of spacecraft and radio-source signals at Ka-band frequencies (nominally 32 GHz). Its

potential benefits for recovering losses due to mechanical antenna distortions at high frequencies (32 GHz

or higher) are described in [2, 3].
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A conceptual block diagram of the Ka-band AFCS designed for the DSN’s 70-meter antennas is shown

in Fig. 1. Its main components are an array of seven 22 dBi horns with a separate Ka-band low-noise

amplifier (LNA) connected to each horn; a seven-channel downconverter assembly that converts the 32 GHz

RF signal to 300 MHz IF (Intermediate Frequency), followed by a seven-channel baseband downconverter

assembly that generates 14 real (seven complex) baseband signals. A digital signal processing assembly

then extracts parameters from the digital samples in real-time to obtain the optimum combining weights and

determine the antenna pointing updates needed to maximize the combined SNR.

In the absence of antenna distortions, a single properly designed receiving horn collects virtually all of

the focused signal power. Distortions generally lead to a shift in the peak of the signal distribution, as well

as a redistribution of the signal power in the focal plane. This leads to loss of power in the central channel,

which can be effectively recovered by the outer horns of an array placed in the focal plane. When the horn

signals are multiplied by complex combining weights matched to the instantaneous magnitude and phase

of the signal in each channel, the SNR of the combined channel can be improved, approaching that of an

undistorted antenna under ideal conditions.

Distortions also affect the pointing of the antenna by introducing shifts in the signal peak. Antenna

pointing errors can degrade the received SNR of both single horn and array receivers, particularly at Ka-

band frequencies. We shall demonstrate that properly designed neural network or least-squares algorithms

effectively remove the time-varying pointing errors and keep the antenna pointed in the direction of maxi-

mum SNR even in the presence of significant antenna distortions.

1.2 Signal Modeling

When the antenna is pointed towards a source such as a distant spacecraft, the “residual carrier” portion of

the signal can be filtered out and used to estimate the desired parameters as shown in [2]. The signal in the

k-th channel (out of seven) can be represented as

rk(t) = sk(t)+nk(t) k= 1;2;3; : : : ;7 (1)

where the real signal and background noise components are defined as

sk(t) =
p

2Sk cos(ωt +θk) (2)
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nk(t) =
p

2[nck(t)cos(ωt)+nsk(t)sin(ωt)] ; (3)

wherenck(t) andnsk(t) are uncorrelated baseband random processes representing the in-phase and quadra-

ture components of the noise, andω represents the Ka-band (32 GHz) carrier frequency. Both the amplitude

Sk and phaseθk of the signal depend on the distortion of the antenna, and also on the pointing offset.

Each channel is downconverted to an intermediate frequency of 300 MHz, after which spacecraft fre-

quency predicts derived from the known spacecraft trajectory are applied and the signals are downconverted

to baseband. The resulting complex baseband signals are sampled and “frequency-locked” using a digital

frequency-lock loop which eliminates any remaining frequency offsets.

The complex samples so obtained remain essentially constant over time-scales of seconds to minutes,

depending on the antenna dynamics, and contain all of the amplitude and phase information used by the

tracking and combining algorithms [3]. During actual tracking, sampling rates of 128 per second were

typical. These samples can be represented as

r̃k(i) = s̃k(i)+ ñk(i) k= 1;2;3; : : : ;7 i 2 Z (4)

where

s̃k(i)� Skejθk (5)

with

E[ñk(i)] = 0 and E[kñk(i)k2] = var[r̃k(i)] = σ2: (6)

We assume that noise samples from different channels are independent, as are different noise samples

in the same channel. It is convenient to represent the received samples as 7 dimensional complex vectors of

the form r̃(i) = s̃(i)+ ñ(i), wherer̃(i) = (r̃1(i); r̃2(i); : : : ; r̃7(i)) and where each component is defined as in

Eq. (5). In order to reduce the effects of noise, the training data set was formed by averaging the received

samples over a large number of consecutive received vectors:

r̃a( jL) = (r̃a;1( jL); r̃a;2( jL); : : : ; r̃a;7( jL)) =
1
L

jL

∑
i= jL�L+1

r̃(i) j = 1;2;3; : : : (7)

where

var(r̃a;k( jL)) =
σ2

L
; (8)
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and r̃a( jL) is the complex averaged vector at timejL – with r̃a;k referring to itskth complex component –

andσ2 is the variance of the additive white Gaussian noise samples. Thus, withL= 128, one-second updates

are generated, whereas withL = 1280 the effective integration time is 10 seconds. Note that as pointed out

above signal amplitudesSk and phasesθk are assumed to remain constant over these observations.

1.3 Problem Statement

The instantaneous pointing error vector of the antenna can be represented as(XEL;EL), a two-dimensional

error vector, whereXEL is the incremental pointing error in cross-elevation, andEL is the incremental

pointing error in elevation measured in millidegrees (mdeg).

We seek to compute the mapping from the 7-dimensional averaged voltage vectorr̃a to the two-dimensional

error vector(XEL;EL), as represented by:2
64 XEL

EL

3
75 f (r̃a) (9)

Residual errors in the voltage vectorra due to noise cause errors in the estimate of(XEL;EL) even if

f (r̃a) is known exactly. However,f (r̃a) is also affected by the physical structure of the antenna, which is

not always precisely known and which changes as the antenna ages or is buffeted by wind. The noisy and

time-varying nature off (r̃a) poses an additional challenge.

Previous work has demonstrated successful application of interpolated least squares and radial basis

function (RBF) networks to correction of antenna pointing errors, based on data from the AFCS, and with

the aim of achieving maximum SNR at the horns [4, 5].

Two distinct problems will be considered here: acquisition and tracking. The acquisition problem in-

volves the estimation of antenna-pointing offsets over a wide range. For instance, if the antenna’s pointing

has drifted by 4 mdeg inXEL and�3 mdeg inEL, an acquisition algorithm must be able to estimate the

offset vector(4;�3) accurately in order to re-point the antenna in the correct direction. Otherwise, a severe

loss of signal power would result due to the 5 mdeg pointing error magnitude on a 70-meter antenna, which

typically has a 9 mdeg beamwidth at 45Æ elevation.

The second problem, tracking, focuses on significantly smaller offsets. After the antenna has been

correctly pointed on source by the acquisition algorithm, it remains necessary to keep it pointed on source to

within one millidegree total pointing error despite slow drift in antenna pointing. Accordingly, the tracking
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algorithm must estimate small pointing errors near the center of the(XEL;EL) space accurately, and correct

them in real-time.

2 Technical Approach

Two approaches, one involving a radial basis function network and the other a quadratic interpolated least

squares algorithm, were developed to synthesize the functionf (r̃a) described by Eq. (9). Descriptions

of both are given below, followed by results and analysis from extensive experiments on real-world and

simulated data.

2.1 Radial Basis Function Networks

2.1.1 Training

A radial basis function (RBF) network consisting of a nonlinear radial basis function layer and a linear

combiner layer was developed and used to estimate antenna pointing errors [6, 7]. The complex voltage of

the center horn was always normalized to 1+ j0, making it unnecessary to provide this input to the network.

This normalization effectively eliminates some of the possible time-dependent variations in the received

signal, at the cost of a slight reduction in the total information presented to the algorithms. The network’s

inputs, therefore, consist of the real and imaginary components of the six normalized horn voltages from the

outer horns, for an input vector dimension of 12. In the case of the acquisition networks, a 13th elevation

input was also present. The network was trained to generate values for the incrementalEL andXELoffsets

corresponding to the inputs.

Each radial basis unit implements a Gaussian function of the form

G(r̃a( jL);ci) = exp
�
�(bkr̃a( jL)�cik)2

�
= exp

0
@�

 
b

12

∑
k=1

(r̃a( jL)k�cik)

!2
1
A (10)

wherera( jL) is the 12-element averaged input voltage vector at timejL (see Eq. (7)),ci denotes theith

radial basis center, andb= 0:8326=spread controls the width of the unit’s region of response. The scalarb

is defined so thatG(ra( jL);ci) = 0:5 whenkra( jL)�cik= spread.
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We define the matrixG as

G =

2
666666664

G(r̃a(L);c1) G(r̃a(L);c2) : : : G(r̃a(L);cM) 1

G(r̃a(2L);c1) G(r̃a(2L);c2) : : : G(r̃a(2L);cM) 1
...

...
. . .

...
...

G(r̃a(NL);c1) G(r̃a(NL);c2) : : : G(r̃a(NL);cM) 1

3
777777775

(11)

whereM is the number of radial basis units andN the number of consecutive input voltage vectors applied

to the network during the course of operation. The column of ones inG refers to a bias weightcbias in the

linear combiner.

Defining the linear combiner weight matrix as

w =

2
64 w1;1 w2;1 : : : wM;1 cbias;1

w1;2 w2;2 : : : wM;2 cbias;2

3
75

T

(12)

the output of the radial basis network in response to theN input voltage vectorsra(L) throughra(NL) as

computed by the linear combiner becomes:

y =

2
64 y1;1(L) y2;1(2L) : : : yN;1(NL)

y1;2(L) y2;2(2L) : : : yN;2(NL)

3
75

T

= wG (13)

whereyj;1( jL) andyj;2( jL) are the RBF network’s responses (estimates ofEL andXEL) to the jth averaged

input vectorr̃a( jL) defined in Eq. (7) forj = 1;2;3; : : :.

For acquisition purposes, dual output networks (forEL andXEL) as described above were designed and

tested. For the fine tracking case, it was found that best performance with low complexity could be achieved

using two single output networks (one forEL and one forXEL).

The number of basis units varies depending on the complexity of the function being approximated and

may be quite large in certain cases. In our case, it was determined by the computationally efficient Orthogo-

nal Least Squares (OLS) algorithm described in [7]. This algorithm uses training data points as radial basis

function centers, and the weights are obtained as the solution to a least-squares fitting problem.

Differences in the antenna’s distortion at different gross elevations led to the training of separate RBF

networks for gross elevations of 15, 45, and 75 degrees. The selection of radial basis widths was guided

by distances among the voltage vectors in the training set and by experimentation. Since different networks

were used forXELand forEL in the fine tracking case, a total of six networks were designed and evaluated
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for tracking. For the coarse acquisition case, estimation ofXELandEL was done by a single network. Only

three networks, one for each elevation, were designed for coarse acquisition.

Key network parameters for the fine tracking case, which involved pointing offsets of 2:00 mdeg or less

in theXEL andEL directions, are shown in Table 1. Network parameters for coarse acquisition are shown

in Table 2.

Tables 1 and 2 show that acquisition requires more radial basis units than fine tracking, since it involves

operation over a much larger range in(XEL;EL) space than tracking.

Although it is possible to use larger radial basis spreads to cover the wider area, the function defined in

Eq. (9) becomes increasingly complex as we move away from the origin, or “on-source” direction(0;0) in

antenna offset space. This rise in complexity in turn makes it difficult to generate good approximations to

f (ra) without using a large number of units, even if larger radial basis spreads are used.

For instance, at 75Æ elevation, the acquisition problem requires 77 radial basis units even with the rather

large spread of 2:50, while the tracking problem requires only 13 radial basis units (forXELestimation) to 15

radial basis units (forEL estimation) even with a much smaller spread value. RBF networks for acquisition

are not simplified when theXEL andEL estimation problems are separated. The use of separate networks

for acquisition merely results in doubling the complexity since each network needs nearly as many basis

units as a single network for joint estimation ofXEL andEL. The inherent complexity off (ra) over the

wider acquisition range thus requires the use of larger, more complex radial basis networks if high accuracy

is to be achieved.

2.1.2 Adaptation

In the real world, antenna aging, thermal gradients, and other factors lead to changes in the antenna structure

that will change the mapping from the 12-dimensional voltage space to the 2-dimensional(XEL;EL) space.

This makes it necessary to continually and incrementally adapt the RBF network mapping to these changes

as new data becomes available.

Gradient descent-based learning can be used to adapt all of the parameters of an RBF network including

the radial basis spreads and the radial basis centers themselves. While this procedure can adjust all of the

network’s parameters over time (except for the number of basis units, which remains fixed), it does not

always converge. By contrast, for afixedradial basis layer, it is possible to achieve a global minimum of
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the mean-squared error as a function of the linear combiner weights, and good re-training performance is

significantly easier to achieve. We take this approach here, and describe below algorithms which avoid

the need to generate an entirely new radial basis network using the OLS procedure every time the antenna

changes, resulting in computational savings and the ability to adjust the RBF network in near real time.

The LMS Algorithm

Since the linear combiner in the RBF network may be thought of as a linear adaptive filter, the LMS algo-

rithm may be applied to adjust its weights and bias term. Letx(n) be the input training vector at timen,

let G(x(n);ci) denote the output of theith radial basis unit at timen, wi(n) denote the corresponding linear

combiner weight at timen (the weights are updated on each iteration of the LMS algorithm), and letcbias(n)

denote the bias term. The linear combiner calculates

y(n) = cbias(n)+
N

∑
i=1

wi(n)G(x(n);ci ): (14)

Updates of the weights are given by

wi(n+1) = wi(n)+ηe(n)G(x(n);ci); (15)

wheree(n) = d(n)� y(n) is the error formed between the desired outputd(n) and the actual outputy(n).

Hereη is the learning rate parameter, which can be adaptively updated for faster convergence - see [8]. The

bias term is viewed as a weight attached to a fixed input of+1 and updated via

cbias(n+1) = cbias(n)+ηe(n) (16)

Pseudo-Inverse Optimization

While the LMS algorithm is a powerful procedure, it is a stochastic approximation to true gradient descent.

It is possible to compute the set of linear coefficients for a given training set and fixed radial basis layer

which yields the lowest possible mean square error (MSE) [6, 9].

With r̃ j denoting thejth training set vector, andci the ith radial basis center, the matrixG defined by

Eq. (11) has a pseudo-inverse given by

G+ =
�
GTG

�
�1

GT : (17)
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The set of linear combining weights that minimizes the MSE over the training data is

wnew= G+d (18)

whered is the set of desired outputs at times 1 throughN defined by:

d = [d(1);d(2); � � � ;d(N)]T (19)

Equation (18) always computes the best possible set of weight updates with respect to the mean-squared

error criterion over the set of training vectors. The LMS algorithm, by contrast, tends to converge to the

optimal weights using stochastic gradient descent, but it does not always reach the best weights. Although

it normally comes close to the best weights, the LMS algorithm tends to “hover” in a neighborhood around

those weights instead of actually achieving them perfectly.

2.2 Quadratic Interpolated Least Squares

The second approach for approximating the mapping described in Eq. (9) involves use of the quadratic

interpolated least squares algorithm.

Consider two vector spaces: a 12-dimensional voltage space and a 2-dimensional(XEL;EL) space. An

initial estimate of the antenna pointing offset is obtained by finding the voltage vector in the training (ref-

erence) set closest to the observed voltage vector. The corresponding vector in(XEL;EL) space represents

our initial estimate of the pointing offset: let us call it(XELinitial ;ELinitial ).

Next, the eight closest points to(XELinitial ;ELinitial ) in the training set are selected. Using the resulting

nine points, one can use one of two methods to obtain the pointing estimates(XELest;ELest). The first

method uses all eight points and computes a best fit quadratic surface. The coordinates(XEL;EL) where

the minimum of this surface occurs, are taken to be the best estimate of the pointing offset. However, it

was found that this method offers only a limited advantage over a much simpler quadratic interpolation

method, where separate one-dimensional quadratic “slices” were used forXEL and forEL instead of the

more complex two-dimensional surface: this simpler method was used in the simulations.
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3 Simulation Description

3.1 Simulation of the Antenna with Gravitational Distortion

Spacecraft signals received by the seven-channel AFCS were simulated in two steps. First, a Physical

Optics analysis code was used to obtain the electromagnetic field at the focal plane of the antenna where the

apertures of the feed horns are located. This code used the 70-m antenna surface-distortion data obtained

from holography measurements during the recent holography-cone experiments [3]. The surface distortions

were actually measured at 12.7, 37 and 47 degrees elevation and were subsequently interpolated to obtain

distortions at other elevations. The resulting distortions were added to the nominal surface data to create

the final “distorted” reflector surface data. The field at the feed horns in the focal plane was computed by

applying a plane wave incident on the main reflector surface, and by tracing the fields to the focal plane via

the sub-reflector.

Next, the computed field data were used to obtain the complex voltages at the horn array, and the field

and power over the aperture of each individual horn was determined. The difference between the power

captured by the feed horns and the total power at the focal plane is an indication of feed array efficiency. In

a separate calculation, the fields at the aperture of each horn, induced by the application of a unit voltage

to the input of the horn, were calculated using a theoretical waveguide modal expansion. These fields were

subsequently convolved with the received focal plane fields at the aperture of each horn in order to calculate

the final complex voltage. Details of these calculations are omitted here for space considerations.

Figures 2 through 4 show the normalized received power distribution on the focal plane of the reflector

at 15Æ, 45Æ, and 75Æ elevations, respectively. The feed apertures of the array are superimposed on the plots

to indicate the power distribution captured by each horn. It can be seen that at 45Æ where the reflector

surface is designed to provide “optimal” performance, most of the energy is captured by the center horn.

On the other hand, at 15Æ and 75Æ elevations, where the effects of gravitational distortions are significant,

considerable energy falls beyond the center horn but is largely recovered by the ring of array elements. As

can be seen, the effects of distortions are particularly pronounced at 75Æ elevation angle. Figure 3 shows

that even in the presence of the surrounding feed elements some of the energy falls between the horns and

therefore is not fully recovered. However, simulations also show that the surrounding ring elements can be

rotated to a position that increases the captured power by more than 0.5 dB. Furthermore, an additional 1 dB
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in efficiency can be obtained by optimally repositioning the entire array in the focal plane, or equivalently

repointing the antenna in the direction that yields maximum combined SNR.

3.2 Tracking Regions

Although the test sets for tracking were defined over a finely spaced grid ranging from�2:00 mdeg to+2:00

mdeg in bothXEL andEL, it is still useful to evaluate the algorithms’ performance over varying ranges in

(XEL;EL) space since, for example, one algorithm may yield better performance very close to the “on-

source” direction(0;0) while another may yield better performance over a greater range of pointing offsets.

The tracking regions for the simulations are defined in Table 3. Error statistics were generated for each of

the five tracking regions to illustrate possible performance differences between the RBF network and the

quadratic interpolated least squares algorithm.

3.3 Simulating Changes in the Antenna Structure

Both acquisition and tracking performance can be adversely affected by changes in the antenna structure, in

which case it becomes necessary for the radial basis networks to adapt to such changes. This is particularly

important for fine tracking algorithms since they are responsible for keeping the antenna pointed accurately

on source throughout the track.

Changes in the antenna structure were simulated by altering the mapping from voltage space to(XEL;EL)

space when generating the training sets for the RBF networks. Let the mapping from voltage space to offset

space be given by Eq. (9), and create a distorted mapping by changing the(XEL;EL) values corresponding

to the voltage vectors using, for example, the following equations:

XELold =
3
4

XELnew+
1
2

mdeg (20)

ELold =
5
4

ELnew+
1
2

mdeg (21)

One may think ofXELold andELold as being the correct offsets corresponding to given voltage vectors

for the antenna at timet1. Antenna aging and other factors may cause the same voltage vectors to map to

XELnew andELnew at timet2, where we have assumedt1 andt2 to be far apart since the idea is to model
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long-termchanges. The RBF networks were trained on the old data in an effort to generate a set of distorted

mappings. We can say that these training data were correct at timet1 in the distant past but changes in the

antenna have yielded a new mapping at timet2. We seek to update the RBF network parameters so the

networks will accurately determine offsets under the new mapping according to the adaptation strategies

discussed in Section 2.1.2.

4 Simulation Results

4.1 Acquisition Performance Comparison

Figures 5 and 6 illustrate the mean error and error standard deviation (or RMS error) of the radial basis

network and the interpolated least squares algorithm at 45Æ of antenna elevation with 10-second integration.

In these figures, both the mean errors and error standard deviations have been averaged over the entire

“acquisition range”. The error inXELand the error inEL were calculated for each of these grid points. The

mean acquisition error in each variable (inXEL and inEL) and the RMS error in each variable were then

computed over the entire acquisition test grid.

One can compute an instantaneous estimate of pointing offset using a single voltage vector sample. This

technique corresponds to 1-second averaging, assuming the system is updated at a rate of one sample per

second. We can also compute 10-second averages in which the input voltage vector is averaged over a period

of 10 seconds. The 10-second averaging scheme results in averaged samples which exhibit a lower variance

than unaveraged 1-second samples. Both techniques were tested for acquisition purposes.

For radial basis networks, mean errors with 10-second averaging were found to be typically less than

0.1 millidegree for SNR above 20 dB-Hz, as illustrated by Fig. 5, which is representative of results achieved

at other elevations. It should be noted that a 10 dB improvement in SNR is associated with 10-second

integration, resulting in smaller mean errors. The choice of integration period (10 seconds) is quite realistic

and is dictated by the antenna’s mechanical system which cannot respond to faster, 1-second updates.

Figure 6 illustrates the error standard deviation of both the RBF network and the quadratic least-squares

algorithm with 10-second integration. The results shown in this figure are representative of those achieved

at other elevations. At high SNR the quadratic least squares algorithm’s performance does not improve with

increasing SNR as expected, but tends to approach an RMS “error floor” of a few tenths of a millidegree.
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This irreducible error appears to be due to decreased accuracy of the interpolation algorithms near the

outer edges of the acquisition range, where simple approximations to the error surface tend to break down.

For medium to high SNR (greater than 20 dB-Hz), the radial basis network outperforms the least squares

algorithm in acquisition mode, whereas in the low SNR region from 10 dB-Hz to approximately 15 dB-

Hz the least squares algorithm yields best performance. These results suggest the use of a hybrid system

consisting of a least squares algorithm for low SNR acquisition, and a radial basis function network for the

medium to high SNR regions.

In summary, these simulations have demonstrated that the RBF neural network yields better mean error

and RMS error performance in the medium to high SNR range during acquisition. However, under very

noisy conditions in acquisition mode the quadratic interpolated least squares algorithm yields the lowest

RMS and mean errors; hence, this algorithm is preferred in the low SNR regions.

4.2 Tracking Performance Comparison

Tracking involves estimation and correction of small pointing errors. Tracking algorithms need only be

optimized for accurate estimation of errors over a small range: our tests were performed by applying offsets

ranging from�2:00 mdeg to 2:00 mdeg in bothXELandEL.

As previously discussed, five tracking regions were defined for evaluation purposes. The first region

was really the point(0;0) in XEL;EL) space, where the mean error and error standard deviations of the

estimates were determined with the antenna simulated pointing perfectly on source in the presence of noise.

The next region is a square centered at(0;0), and the remaining regions are progressively larger squares, as

defined in Table 3.

4.2.1 RBF Network Performance

Figures 7 through 9 show the desired target points in(XEL;EL) space denoted by dark “x” symbols and

the estimates computed by the RBF networks as light dots. For each offset, shown as a dark “x”; 100

independent estimates from the RBF network were used to obtain a scatter plot of the neural networks’

estimates of the applied antenna offsets. These light dots form clusters near the target points, and the size

and the center of each cluster give a rough indication of neural network performance.

Each scatter plot was taken at an SNR of 40 dB-Hz with 10-second integration, illustrating performance
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over region 3 as defined in Table 3. It is interesting to observe that performance is better at low and high

elevations, where there is significant antenna distortion, than at 45Æ elevation where distortion is minimal.

This is attributed to the fact that more signal power is present in the outer horns when there is distortion,

providing more information to the RBF network for a better estimate of the applied offset. However, we also

observe a slight bias at 75Æ of elevation, evidenced by the fact that the clusters of estimates (light dots) are

not centered perfectly on the true offsets (dark “x” symbols). A summary of RBF network performance in

terms of mean error and error standard deviation at 40 dB-Hz SNR, with 10-second integration, is provided

in Table 4.

4.2.2 Least Squares Performance

A scatter plot for the quadratic interpolated least squares algorithm is given in Fig. 10. At 75Æ elevation

estimator bias starts to become significant. The error standard deviation and mean error of the least squares

algorithm, averaged over the entire grid, are shown in Table 5.

4.2.3 Performance Comparison

The least squares algorithm evaluated here implicitly assumes a quadratic error surface since it uses quadratic

interpolation. This assumption appears to be good at both 15 and 45 degrees elevation where performance

is nearly identical to that of the RBF networks.

At 75Æ elevation, the antenna surface suffers significant distortion. The spatial distribution of power in

the focal plane is greatly affected by these distortions, and a significant amount of power appears in the

outer horns. Furthermore, the assumption of a quadratic error surface only appears to hold for a very small

neighborhood in this region, with a breakdown of the quadratic assumption becoming evident as we move

away from (0,0) in antenna offset space as shown in Fig. 10.

The RBF network is better able to deal with severe antenna distortion as illustrated in Fig. 9. Under the

high SNR conditions shown in Figs. 9 and 10, the clusters are very small for both algorithms at 75Æ elevation.

The errors in the least squares algorithm at this elevation are mostlysystematicwith very little random

error, indicating breakdown of the quadratic surface assumption at high elevations when the antenna’s main

reflector is severely distorted.

Figures 11 through 18, which highlight performance over region 3, defined over�1:00 mdeg in antenna
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offset space, are representative of results achieved for all five regions. Figures 11 through 14 show the mean

errors obtained with both the interpolated least squares and RBF network algorithms. Both one-second

and ten-second integration times are included in the error plots. Error standard deviations are illustrated in

Figs. 15 through 18. In all cases, errors in millidegrees are plotted against SNR in dB-Hz.

RBF networks generally exhibit higher mean errors at low SNR than the least squares algorithm. At

medium-to-high SNR the RBF network’s performance does not differ significantly in terms of mean error.

Furthermore, the error standard deviations are comparable, indicating the RBF network comes close to the

performance of the quadratic interpolated least squares algorithm without significant differences in random

error.

For 75Æ of elevation, the RBF network exhibits an advantage in terms of overall performance, mostly

due to its ability to better handle non-quadratic error surfaces which are characteristic of severely distorted

antennas.

Overall, both algorithms exhibit similar performance for tracking at elevations of 15 and 45 degrees,

while the RBF network performs better than the quadratic interpolated least squares algorithm at very high

elevations corresponding to severe antenna distortion.

We observe that both algorithms achieve the nominal 0:8 mdeg total pointing accuracy requirement at

SNR above approximately 20 dB-Hz at all elevations when 10-second integration is used. This integration

time is compatible with the practical update rate of the antenna and represents outstanding “weak signal”

performance. Even with 1-second integration both algorithms meet the 0.8 mdeg requirement above 30

dB-Hz, although pointing corrections generally cannot be applied to the antenna at such a high rate.

4.3 Adaptive Tracking Results

As discussed in Section 3.3, a simple affine transform was used to simulate a changed antenna and to

determine the performance of the radial basis network on translational, shrink, and stretch distortions. Six

RBF networks were trained on voltage-to-offset mappings representing the antenna in the “old” state. The

affine transform was used to change the voltage-to-offset mapping, and the RBF networks were simulated

on the “new” antenna state both before and after undergoing re-training.

In Fig. 19 (40 dB-Hz and 10-second integration times) we see that the estimates (red clusters) corre-

sponding to the antenna offsets from the RBF networks are very far from the dark “x” symbols denoting the
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new values. This illustrates the performance of the networks trained on old data representing, for example,

a pointing bias and scaling due to aging. Our objective is to re-train the networks to remove the pointing

bias by adapting their linear combiners.

For the 75Æ elevation case, Fig. 20 shows the error standard deviations, which indicate an “error floor” of

about 0.2 mdeg even at high SNR. There is also a systematic pointing error of�0:5 mdeg in both coordinates

resulting from training on the old data which dominates the mean error.

4.3.1 LMS Results

Using an updated set of training data, the RBF networks were re-trained using the LMS algorithm. The

resulting networks, with 10-second integration and an SNR of 40 dB-Hz, yield the performance illustrated

in Fig. 21, which is representative of results achieved at other elevations. Much of the systematic pointing

bias has been successfully removed.

The error standard deviation is also shown as a function of SNR for the 75Æ case in Fig. 22, illustrating

significant improvements due to adaptation. After LMS retraining the network achieves significantly im-

proved performance, although it does not achieve the same performance as a network created using the new

data and the OLS algorithm. While the pointing biases have been successfully removed, we see from figure

21 that the distortion has not been fully eliminated. This is due to several factors. The number of radial basis

units, along with their centers and their widths, remained fixed in this adaptation approach. It is likely that

the optimal set of centers for the old data is not the optimal set of centers for the new data. Furthermore,

LMS is a stochastic gradient descent procedure which does not implement true, noiseless gradient descent;

hence, there is some noise in the convergence process. The performance improvements after adaptation are

nonetheless dramatic and important.

4.3.2 Pseudo-Inverse Optimization

As shown in Figs. 23, the pseudo-inverse method yields superior training performance, with most of the

error caused by the old training set well-corrected after re-training is complete. As with the LMS case,

the results obtained at 75Æ are representative of results obtained at other elevations. The LMS method also

yields acceptable performance, but LMS is a stochastic gradient descent procedure. It is therefore only an

approximation to the true gradient descent algorithm, and even true gradient descent takes many iterations to
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converge asymptotically to the optimal weight vectorw. By contrast, the pseudo-inverse method calculates

a set of weights which yields the lowest possible MSE for a fixed radial basis layer [6, 9].

If near real-time updating is desired, it may be advisable to use the LMS algorithm, although storing

and averaging data to form new training sets to update the linear combiner weights using the pseudo-inverse

method would likely yield better performance. While it is possible to use the OLS method to re-generate

the RBF neural networks, such re-generation is the most computationally expensive option and is not rec-

ommended unless significant changes in the antenna have occurred.

5 Real-World Experimental Data Results

Data collected during observations of the DS1 spacecraft˜citeds1, as described in [4], were also used to

evaluate the RBF network. Since antenna distortion is elevation-dependent, data were collected at virtually

all elevations from less than 10Æ (near the horizon) to over 80Æ (close to zenith). The data were grouped in

elevation bands spanning 0-10 degrees elevation, 10-20 degrees, and so on, up to the highest band covering

80-90 degrees. The signal source was the 32 GHz residual carrier of the spacecraft DS1, which was in cruise

mode near the earth, providing a strong and stable signal.

While tracking the residual carrier, the antenna pointing was refined by means of a “five-point boresight-

ing” algorithm that introduced�4 mdeg pointing offsets in two orthogonal directions along the line-of-sight.

The algorithm then measured the signal power in the central horn (channel 1) at each offset as well as with

no offset (nominal on-source direction) and computed a pointing update based on a quadratic fit to the data.

After a few iterations, the magnitude of the updates approached zero, and the signal power in the central

channel was maximized: this was considered to be the true “on-source” direction. The antenna was allowed

to track the source using its own tracking model which takes into account both the rotation of the earth and

the relative motion of the spacecraft.

Following this fine-pointing operation, a raster-scan was initiated. The antenna was commanded to

predetermined offsets from the nominal on-source direction, and the received vector measured at each point.

The raster-scan consisted of the offsets (in mdegs) 0,�2,�4,�6 in both the elevation and cross-elevation

directions (these refer to local orthogonal coordinates defined around the line-of-sight). Note that the zero-

offset case defines the effect of antenna distortions on the received complex signals at that elevation, whereas
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the other cases contain a mixture of both distortion and pointing effects. In order to remove some possible

time-dependent variations in the data, the data vectors were normalized by the complex value of the central

horn (channel 1), so that the real and imaginary parts of first component were always 1 and 0, respectively.

Thus, only the response of the six outer horns were used to train the network.

5.1 Performance Evaluation

After the RBF network was trained with the averaged training data-set, its performance on tracking data

obtained on days 29 and 38 was evaluated. Although some of the DS1 raster scan data used for performance

evaluation from these two days also contributed to the training data-set (along with raster scan data from

several other tracks), there was no noticeable change in performance when compared to tracking segments

that were not averaged into the training-set, such as five-point boresights. Table 6 highlights the performance

obtained with our two data sets.

As expected, performance was found to be a strong function of SNR. For very low SNR, mean errors

and error standard deviations could exceed 1 millidegree. For high SNR cases, errors were typically less

than 0.5 millidegrees, which is significantly better than the nominal 0.8 mdeg pointing accuracy requirement

for Ka-band communications on the 70-meter deep space antenna.

Figures 25 and 26 illustrate the ability of the neural network to estimate the incremental pointing offsets

applied to the antenna as it tracked the source. The light gray lines indicate the incremental pointing offsets

applied in either theEL or XEL directions, while the dark, thin lines indicate the radial basis network’s

estimate of the applied pointing offset. The error in estimating the antenna pointing offset is the vertical

distance between the two. These two lines are generally very close, highlighting the radial basis network’s

ability to estimate pointing offsets accurately in this region.

Additional observations can be made from the two plots in Figs. 25 and 26. First, even with one second

integration tracking is generally very good with only slight errors, typically well under 1 millidegree. Sec-

ond, note that in typical applications the noisy output of the radial basis network can be further improved

by averaging, thus achieving even better performance. Such averaging was not performed here due to the

rapid changes in the artificially applied offsets, such as the�4 millidegree spikes (boresights). During ac-

tual tracking under calm conditions, longer integrations (or averaging of several one-second integrations)

would be performed to improve the estimates: thus, with 4 second integration (or averaging of 4 one-second
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voltage input vectors) the standard deviation of the estimates is reduced by a factor of two, with 9 seconds a

factor of 3, and so on.

Occasional error spikes can also be observed in these plots. These are generated by large changes in the

“other” variable. This effect is be the result of cross-coupling between theXEL andEL directions, due to

a slight (approximately 10 degree) rotation of the feed array axes with respect to the antenna axes due to

physical constraints on the antenna. For example, the sharp drop in the radial basis network’s estimate of

XEL just after 25 seconds and also near 170 seconds in Fig. 25 corresponds to a sudden 4 mdeg change in

EL occurring at the same time. However, in an operational system, cross-coupling will be minimized by

careful alignment; hence, this effect is not expected to be significant. In addition, since the cross-coupling

effect appears as a sudden change in the mean of the estimate, averaging several one-second estimates (as

is the case in real-world operation) tends to reduce this effect proportional to the number of measurements

averaged. Thus, if cross-coupling affects a single one-second estimate then averaging 4 measurements will

tend to reduce it by a factor of 4, and so on. However, even with the cross-coupling errors included in the

calculation of the sample-variance, the resulting standard deviation of estimation error remains under 0.5

millidegrees in both theXELandEL directions in this region.

6 Conclusions

We have shown that both interpolated least squares and adaptive RBF networks, working in conjunction

with an array feed compensation system, can point a 70-meter deep space antenna with RMS errors of 0.1-

0.5 millidegree, under a wide range of signal-to-noise-ratios and antenna elevations, achieving significantly

higher accuracies than the 0.8 millidegree benchmark for communications at Ka-band frequencies of 32

GHz.

As such they demonstrate clear potential for highly accurate pointing of the 70-meter DSN antennas,

which is an extremeley challenging problem due to a multitude of time-varying distortions imposed on the

antenna structure on a continuous basis.

Results indicate that RBF networks perform as well or better than quadratic interpolated least squares

algorithms at varying antenna elevations for tracking and acquisition, and under a wide range of SNR con-

ditions. At high antenna elevations, the quadratic interpolation method deteriorates for any significant offset
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from the “on-source” direction, making RBF networks especially attractive during high elevation operations.

Long-term adaptation of our algorithms for distorted antennas has also been shown to result in signif-

icantly improved performance. We have shown that adaptation of the linear combiner weights in the RBF

network yields excellent performance for simple stretch, shrink, and translational distortions.

The system described in this paper is currently in testing phases at NASA’s Goldstone DSN station,

and slated for implementation for real-time, adaptive acquisition and tracking of the antenna, marking the

first real example of a computationally intelligent telecommunication application for NASA’s deep space

network.
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Gross EL Radial Basis Variable Number of
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45 0.7500 XEL 6

45 0.7500 EL 8

75 0.7500 XEL 13

75 0.7500 EL 15

Table 1: Radial Basis Neural Network Parameters for Tracking Networks
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Region 1 (0,0)

Region 2 Square.�0:50 mdeg inXELand inEL.

Region 3 Square.�1:00 mdeg inXELand inEL.

Region 4 Square.�1:50 mdeg inXELand inEL.

Region 5 Square.�2:00 mdeg inXELand inEL.

Table 3: Test Regions for Tracking Performance Evaluation

Elevation Variable Mean Error (mdeg) Error Standard Deviation (mdeg)

15deg XEL -0.0005 0.0491

15deg EL 0.0434 0.0350

45deg XEL 0.0009 0.0696

45deg EL 0.0231 0.0523

75deg XEL 0.0052 0.0380

75deg EL 0.0090 0.0258

Table 4: RBF Network Tracking Performance at 40 dB-Hz with 10-second integration

Elevation Variable Mean Error (mdeg) Error Standard Deviation (mdeg)

15deg XEL 0.0008 0.0437

15deg EL 0.0154 0.0330

45deg XEL 0.0001 0.0685

45deg EL 0.0034 0.0633

75deg XEL 0.0000 0.0819

75deg EL 0.0268 0.0422

Table 5: Quadratic Interpolated Least Squares Performance at 40 dB-Hz with 10-second integration
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Day/ Gross Gross eXEL sXEL eEL sEL SNR Direction of

Region Elevation Azimuth (mdeg) (mdeg) (mdeg) (mdeg) (dB-Hz) GrossEL

(deg) (deg)

29/1 57.4-64.7 96.9-104.7 -0.0505 0.4207 0.0507 0.4147 30 to 40 Rising

29/1 57.4-64.7 96.9-104.7 0.1501 0.3152 -0.0204 0.2708 > 40 Rising

29/3 61.1-65.0 254.4-259.1 0.1318 0.4112 0.0419 0.4153 30 to 40 Rising

29/4 55.1-59.9 260.4-264.8 0.1262 0.6722 -0.1662 0.5116 30 to 40 Rising

29/4 55.1-59.9 260.4-264.8 0.2267 0.3488 -0.1797 0.3249 > 40 Rising

38/1 69.3-72.7 113.8-122.0 -0.1985 0.7383 0.0454 0.9468 20 to 30 Rising

38/4 77.3-79.6 142.0-191.9 -0.2711 0.6834 0.2703 0.6941 20 to 30 Rising

38/4 77.3-79.6 142.0-191.9 -1.1917 1.4167 -0.2350 1.1166 10 to 20 Rising

Table 6: Mean elevation and cross-elevation error (eXEL,eEL); corresponding standard deviations (sXEL,sEL),

for test data on different regions of days 29 and 38; and corresponding gross elevation/azimuth, and SNR
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Figure 6: Error standard deviations as a function of SNR for both RBF network and interpolated least

squares algorithms at 45Æ elevation with 1-second integration
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Figure 7: RBF Region 3: 15Æ, 40 dB-Hz, 10-second integration
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Figure 8: RBF Region 3: 45Æ, 40 dB-Hz, 10-second integration

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

XEL

E
L

Figure 9: RBF Region 3: 75Æ, 40 dB-Hz, 10-second integration
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Figure 10: LS Region 3: 75Æ, 40 dB-Hz, 10-second integration
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Figure 12: Mean errorsEL 45Æ
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Figure 13: Mean errorsXEL75Æ
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Figure 14: Mean errorsEL 75Æ
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Figure 15: Error standard deviationsXEL45Æ
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Figure 16: Error standard deviationsEL 45Æ
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Figure 17: Error standard deviationsXEL75Æ
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Figure 18: Error standard deviationsEL 75Æ
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Figure 19: Performance of RBF network trained on old data at 75Æ
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Figure 20: Error standard deviation resulting from training on old data: 75Æ
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Figure 21: Performance of RBF network adapted with the LMS algorithm at 75Æ

10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB−Hz)

E
rr

or
 S

td
 D

ev
 (

m
de

g)

XEL 1−sec 
EL 1−sec  
XEL 10−sec
EL 10−sec 

Figure 22: Error Standard Deviation after LMS adaptation
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Figure 23: Performance of RBF network adapted using the pseudo-inverse method at 75Æ
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Figure 24: Error standard deviations after pseudo-inverse re-training
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Figure 25: Day 29XELestimation over Region 3
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Figure 26: Day 29EL estimation over Region 3
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